While the present paper was being prepared, Dr Edshammar sent the author the structural parameters he had obtained from his study of crystals of $\mathrm{Mg}_{6} \mathrm{Rh}$ ($a_{o}=20 \cdot 1 \AA$). He also stated that these parameters did not explain the intensity data his colleague had collected from crystals of $\mathrm{Mg}_{6} \mathrm{Pd}$, and that the latter structure had not yet been solved.

Comparison of his parameters with those obtained here show that $\mathrm{Mg}_{6} \mathrm{Rh}$ is isostructural with $\mathrm{Na}_{6} \mathrm{Tl}$. All rhodium atoms are in place of thallium and all magnesium atoms in place of sodium, the Laves-Friauf polyhedron, again, being empty.

Since the noble metals have metallic radii differing by no more than about 2%, the lack of isostructural behavior of $\mathrm{Mg}_{6} \mathrm{Rh}$ and $\mathrm{Mg}_{6} \mathrm{Pd}$ is surprising, especially since rhodium and palladium are adjacent to each other in the periodic table of the elements. Also, the increased number of magnesium atoms (352 in $\mathrm{Mg}_{6} \mathrm{Rh}$ as compared to 340 in $\mathrm{Mg}_{6} \mathrm{Pd}$) results in $\mathrm{Mg}-\mathrm{Mg}$ bonds that are still shorter than those observed here (see also the Refinement section).

It seems at this stage impossible to predict the type of structure that might be represented by $\mathrm{Mg}_{6} \mathrm{Ir}$ and $\mathrm{Mg}_{6} \mathrm{Pt}$ or possibly by $\mathrm{Mg}_{6} \mathrm{Ru}$ and $\mathrm{Mg}_{6} \mathrm{Os}$ (if these two also exist). Each of these will have to be investigated separately with the use of single-crystal data. As stated in the Refinement section, the crystal of $\mathrm{Mg}_{6} \mathrm{Pt}$ ($a_{o}=20.083 \AA$) investigated here is still believed to be twinned, but the possibility of the existence of a third
and a fourth structure type will, as yet, have to be taken into account.

An important lesson to be learned from the present experience is that one should not draw conclusions from visual inspection of powder photographs as to whether or not intermetallic compounds are isostructural. Unfortunately, this has been done quite frequently in the past and is sometimes still practised today.

I am very thankful to Mr Benes Trus and Mrs Jean Westphal for having provided valuable help with computing problems. I also thank my wife, Mrs Lalli Samson, for having prepared the stereo pictures (Figs. 2 and 3). I am grateful for Mr Anthony Wong's successful efforts to prepare the single crystals.

References

Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.

Ferro, R. (1959). J. Less-Common Metals, 1, 424.
Ferro, R. \& Rambaldi, G. (1960). J. Less-Common Metals, 2, 383.
Larson, A. C. (1967). Acta Cryst. 23, 664.
Samson, S. (1958). Acta Cryst. 11, 851.
Samson, S. (1965). Acta Cryst. 19, 401.
Samson, S. \& Gordon, E. K. (1968). Acta Cryst. B24, 1004.
Samson, S. \& Hansen, A. (1972). B28, 930.

The Crystal Structures of 2,4,6-Trichlorobenzonitrile and 2,4,6-Tribromobenzonitrile

By Virginia B. Carter and Doyle Britton
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

(Received 11 June 1971)
2,4,6-Trichlorobenzonitrile crystallizes in the monoclinic space group $P 2_{1} / c$ with $a=3.97$ (1), $b=16.06(3)$, $c=12 \cdot 84$ (2) \AA, and $\beta=91 \cdot 0(3)^{\circ} .2,4,6$-Tribromobenzonitrile crystallizes in the monoclinic space group $P 2_{1} / m$ with $a=8.82$ (2), $b=10 \cdot 34$ (2), $c=4.89$ (1) \AA, and $\beta=95 \cdot 8$ (2) ${ }^{\circ}$. The structures of both compounds were determined from three-dimensional film data and were refined to conventional R values of 0.134 and 0.089 , respectively. Neither molecular structure contains any unusual features. The packing of the molecules in the crystals is dominated by weak Lewis acid-base interactions, CN \cdots, between the cyanide groups and ortho halogen atoms in a manner reminiscent of the dimerization of carboxylic acids. In the chloro compound these interactions lead to dimers, with $\mathrm{CN} \cdots \mathrm{Cl}$ distances of $3 \cdot 22 \AA$. In the bromo compound these interactions lead to infinite chain-like polymers, with $\mathrm{CN} \cdots$ Br distances of $3.06 \AA$.

Introduction

Short intermolecular N...X distances are well known in the cyanogen halides (CICN, Heiart \& Carpenter, 1956; BrCN, Geller \& Schawlow, 1955; ICN, Ketelaar \& Zwartsenberg, 1939) and have recently been found in the halocyanoacetylenes (CICCCN and BrCCCN,

Bjorvatten, 1968; ICCCN, Borgen, Hassel \& Rømming, 1962). These short distances have been interpreted as indicating donor-acceptor or acid-base interactions between adjacent molecules. A study of p-halobenzonitriles and isonitriles, looking for the same phenomenon (p-iodobenzonitrile, Schlemper \& Britton, 1965; preliminary results quoted in Britton, 1967), has
been in progress in this laboratory. In the course of this work, it seemed to us that two partially completed structural studies involving related compounds should be finished. Gol'der, Zdanov \& Umanskij (1952) determined the structure of 2,4,6-trichlorobenzonitrile in projection, and it appeared possible that short $\mathrm{N} \ldots \mathrm{Cl}$ distances might be present, although not with a linear $\mathrm{CN} \cdots \mathrm{Cl}$ arrangement. Bredig (1930) determined the space g_{1} oup and unit cell of 2,4,6-tribromobenzonitrile; from the size, shape, and symmetry of the unit cell is seemed to us that a linear alignment of molecules, and specific intermolecular interactions, were a distinct possibility. Accordingly, we report here more complete structure determinations for both these compounds.

Experimental

Both compounds were prepared by Mr Henry Grote from the corresponding aniline via the Sandmeyer reaction. Recrystallization from benzene gave crystals suitable for X-ray diffraction studies. The unit-cell dimensions were determined from Weissenberg and precession photographs ($\mathrm{Cu} K \alpha, \lambda=1.5418 \AA$; Mo $K \alpha$, $\lambda=0.7107 \AA$). These dimensions, along with previous results, are reported in Table 1. For the chloro compound, the systematic extinctions ($0 k 0, k=2 n+1 ; h 0 l$, $l=2 n+1$) indicate a $P 2_{1} / c$ space group. For the bromo compound, systematic extinctions ($0 k 0, k=2 n+1$) indicate the space group to be either $P 2_{1}$ or $P 2_{1} / m$. Bredig concluded that $P 2_{1} / m$ is the correct choice, based on morphology and etch figures; the final solved structure confirms this choice. To avoid slow sublimation, both crystals were sealed in capillaries for intensity-data collection.

Compound $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$

Multiple film Weissenberg data ($\mathrm{Cu} K \alpha$ radiation) were collected for $0 \mathrm{kl}-2 \mathrm{kl}$ using an approximately cylindrical crystal 0.10 mm in diameter and 0.88 mm in length. Precession data, $h k 0$ and $h 0 l$, were collected to scale the Weissenberg layers. Intensities were measured by visual comparison with a series of timed exposures of a selected reflection. There were 349 independent reflections of measurable intensity and 154 more, in the same region of reciprocal space, with intensities too faint to measure. The latter were included in the final least-squares calculations with F (unobserved) taken as
$\frac{1}{2} F_{o}(\min)$. Lorentz and polarization corrections were made, but not absorption corrections; the linear absorption coefficient, μ, is $95.6 \mathrm{~cm}^{-1}$.

Fig. 1. Crystal structure of trichlorobenzonitrile. Top, projection along b, where the separation into layers is clearly seen. Bottom, projection perpendicular to layers. Displacement of successive layers is shown in the top half of this view; the in-plane contacts of a single molecule are shown in the bottom half. All numbers are distances in \AA.

Table 1. Crystal data

	$\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$		$\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$	
	This work	Gol'der	This work	Bredig
a	3.97 (1) \AA A	$4 \cdot 11$ Å	8.82 (2) \AA A	8.77 Å
b	16.06 (3)	15.95	10.34 (2)	$10 \cdot 32$
c	12.84 (2)	12.83	4.89 (1)	$4 \cdot 88$
β	91.0 (3) ${ }^{\circ}$	$91.5{ }^{\circ}$	$95 \cdot 8$ (2) ${ }^{\circ}$	$96.0{ }^{\circ}$
$D_{\text {obs }}$	-	$1.67 \mathrm{g.cm}^{-3}$	-	
$D_{\text {cale }}$	$1.674(5) \mathrm{g.cm}{ }^{-3}$	$1 \cdot 64$	$2 \cdot 540$ (7) g.cm ${ }^{-3}$	$2.51 \mathrm{g.cm}{ }^{-3}$
Z	4			
Volume	$205 \AA^{3}$ per molecule		$223 \AA^{3}$ per molecule	
Space group	$P 2_{1} / \mathrm{c}$		$P 2{ }_{1} / m$	

A three-dimensional Patterson map clearly showed the three chlorine atom positions. A Fourier synthesis was used to determine the light atom positions. Positions of the chlorine and carbon atoms in the benzene ring agreed approximately with the previously reported y and z parameters. The cyanide, however, was positioned differently, such that the nitrogen atom position was roughly that previously reported, but the carbon atom was attached to the other nearby benzene ring (Fig. 1).

Full-matrix least-squares refinement was carried out with all atoms ultimately given anisotropic thermal parameters. At every third cycle the Weissenberg layers were rescaled; consequently, anisotropic thermal parameters in the a direction are less meaningful due to this rescaling. The intense reflections appeared to be affected by extinction, and eight with $F_{c}>58$ were omitted from the refinement (four others with $F_{c}>58$ were inadvertently left in the last refinement; but for none of these four was the difference between F_{o} and F_{c} large, so the refinement was not repeated). In the final cycle, the weighted sum of residuals (r) was 0.027 , the unweighted sum of residuals, (R) was $0 \cdot 134$, and F_{w} was 20.8 in the weighting scheme.* To check that the cyanide position was correct, (since it differed from the previously reported position), Fourier and difference Fourier maps were calculated based on all atoms having isotropic thermal parameters. The cya-

[^0]nide carbon atom peak had a height of 66 on an arbitrary scale in the Fourier map, while the height at the previously reported (incorrect) position, which also corresponded roughly to a hydrogen atom position, was 7 on the same scale. The highest peak on the difference map was of height 22 , in the close vicinity of one of the chlorine atom positions and a consequence of anisotropic thermal motion. Final parameters are given in Table 2. Observed and calculated structure factors are listed in Table 3.

Compound $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$

Multiple-film Weissenberg data were collected for $h 0 l-h 9 l(\mathrm{Cu} K \alpha$ radiation) on a tabular $\{201\}$ crystal measuring $0.16 \times 0.18 \times 0.07 \mathrm{~mm}$ and for $h k 0-h k 4$ (Mo $K \alpha$ radiation) data were collected on a prismatic crystal, elongated along \mathbf{c}, measuring $0.15 \times 0.18 \times 0.45$ mm . On both crystals the developed forms were $\{201\}$ and $\{110\}$. Lorentz, polarization, and absorption corrections were made, the latter using the actual crystal shape. The linear absorption coefficients are $182 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation and $144 \mathrm{~cm}^{-1}$ for Mo $K \alpha$ radiation. Transmission factors ranged from $0 \cdot 16$ to $0 \cdot 46$ on the first crystal and from 0.10 to 0.19 on the second. The data were correlated and averaged. There were 304 independent reflections with measurable intensities.

The structure was solved from Patterson and Fourier maps and refined using full-matrix least-squares methods. After the initial refinement with anisotropic bromine atoms using all the data, the two sets of data were separated, refined independently, rescaled, and recombined. The structure was refined to this point with $F_{w}=40$ in the weighting scheme; an examination of $\left|\left|F_{o}\right|-\left|F_{c}\right|\right|$ as a function of $\left|F_{o}\right|$ suggested that an F_{w} of 22 would be more nearly correct. Using this F_{w} value, and with only the bromine atoms anisotropic, the refinement converged at $r=0.054, R=0.089$.

Table 2. Positional and thermal parameters*

Compound $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \stackrel{\boldsymbol{x}}{\boldsymbol{C}}$ (y	z	B_{11} or B	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
		Compound $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$							
$\mathrm{Cl}(2)$	0.7481 (12)	0.0156 (3)	$0 \cdot 1331$ (3)	$6 \cdot 10$ (34)	3.73 (22)	5.57 (27)	-0.04 (20)	1.22 (22)	-1.48 (19)
$\mathrm{Cl}(4)$	$0 \cdot 2380$ (12)	$0 \cdot 1041$ (3)	$0 \cdot 4862$ (3)	$4 \cdot 60$ (34)	$7 \cdot 01$ (31)	3.65 (24)	0.67 (21)	$0 \cdot 86$ (22)	0.96 (19)
$\mathrm{Cl}(6)$	0.7900 (12)	$0 \cdot 3131$ (2)	$0 \cdot 2126$ (4)	$5 \cdot 52$ (32)	$3 \cdot 20$ (21)	7.18 (28)	0.39 (21)	1.92 (23)	$0 \cdot 26$ (21)
C(1)	0.7412 (41)	0.1476 (12)	$0 \cdot 1818$ (12)	$2 \cdot 6$ (10)	$5 \cdot 1$ (11)	2.5 (8)	$0 \cdot 6$ (8)	$0 \cdot 1$ (8)	$0 \cdot 1$ (8)
C(2)	$0 \cdot 6501$ (48)	0.0678 (11)	$0 \cdot 2145$ (16)	$6 \cdot 3$ (14)	$3 \cdot 2$ (10)	5.9 (13)	0.7 (8)	$1 \cdot 2$ (10)	$-2 \cdot 1$ (8)
C(3)	0.4894 (51)	0.0515 (11)	$0 \cdot 3068$ (14)	$6 \cdot 2$ (13)	$7 \cdot 1$ (11)	1.4 (8)	1.0 (9)	$0 \cdot 1$ (8)	$1 \cdot 1$ (8)
C(4)	$0 \cdot 4278$ (39)	$0 \cdot 1217$ (12)	$0 \cdot 3696$ (11)	$3 \cdot 5$ (12)	$6 \cdot 0$ (10)	$1 \cdot 6$ (7)	$2 \cdot 0$ (8)	$1 \cdot 2$ (7)	-0.2 (9)
C(5)	$0 \cdot 5058$ (45)	$0 \cdot 2047$ (11)	$0 \cdot 3426$ (15)	$2 \cdot 4$ (10)	$4 \cdot 7$ (11)	$6 \cdot 1$ (12)	-0.0 (7)	$0 \cdot 3$ (9)	0.7 (8)
C(6)	$0 \cdot 6805$ (42)	$0 \cdot 2134$ (9)	$0 \cdot 2490$ (14)	$3 \cdot 3$ (11)	$3 \cdot 3$ (9)	$3 \cdot 6$ (9)	-0.9 (7)	$0 \cdot 4$ (8)	$0 \cdot 6$ (7)
C(N)	$0 \cdot 9050$ (47)	$0 \cdot 1644$ (8)	$0 \cdot 0838$ (17)	$2 \cdot 0$ (12)	$2 \cdot 4$ (8)	$7 \cdot 8$ (14)	-0.3 (6)	$3 \cdot 0$ (10)	-0.5 (8)
N	1.0464 (45)	$0 \cdot 1719$ (8)	0.0097 (15)	$7 \cdot 3$ (12)	$4 \cdot 5$ (8)	$8 \cdot 3$ (10)	-0.4 (7)	$6 \cdot 2$ (9)	-0.4 (8)
Compound $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$									
$\operatorname{Br}(2)$	$0 \cdot 1868$ (5)	$0 \cdot 5238$ (4)	$0 \cdot 3307$ (8)	$3 \cdot 29$ (22)	$2 \cdot 52$ (16)	4.02 (21)	$0 \cdot 44$ (16)	-0.33 (15)	$0 \cdot 64$ (14)
${ }^{\mathrm{Br}}$ (4)	0.5785 (6)	$\frac{1}{4}$	$1 \cdot 1079$ (11)	$2 \cdot 40$ (28)	3.94 (28)	$3 \cdot 16$ (27)		-0.38 (19)	
C(1)	$0 \cdot 1853$ (57)	$\frac{1}{4}$	$0 \cdot 3698$ (94)	$2 \cdot 4$ (10)				-0.38 (19)	
C(2)	$0 \cdot 2565$ (41)	$0 \cdot 3699$ (38)	$0 \cdot 4839$ (65)	$2 \cdot 8$ (7)		* Anis	tropic temp	erature fact	are of the
C(3)	$0 \cdot 3730$ (40)	$0 \cdot 3712$ (34)	0.7122 (61)	2.7 (6)		form:			
C(4)	0.4393 (61)	1	$0 \cdot 7862$ (101)	$2 \cdot 6$ (10)		$\exp \left[-\frac{1}{4}\right.$	$B_{11} h^{2} a^{* 2}+$	$\ldots+2 B_{12} h$	$\left.\left.{ }^{*} b^{*}+\ldots\right)\right]$.
C(N)	0.0955 (72)	$\frac{1}{4}$	$0 \cdot 1341$ (117)	$3 \cdot 9$ (12)		E.s.d.'s	or the final	significant	figures are
N	-0.0163 (63)	$\frac{1}{4}$	-0.0334 (105)	$5 \cdot 1$ (12)		given in p	arentheses.		

Results and discussion

The intramolecular bond lengths and angles for both compounds are given in Table 4. No unusual bond lengths exist in either compound, and, in view of the limited accuracy, a detailed discussion and comparison with other compounds is omitted. The bond angles also appear to be normal, including the increase in the ring angle at the carbon atoms attached to halogen atoms and the decrease of the remaining ring angles (for a closely related previous example of this phenomenon, see Christensen \& Strømme, 1969). For leastsquares planes through the molecules (with atoms weighted proportionally to their atomic numbers in determining the plane), the average deviation from the plane is $0.024 \AA$ for the chloro compound and $0.06 \AA$ for the bromo compound. These values are slightly greater than the average uncertainties in the atom positions, and we conclude that the molecules are
slightly puckered. However, individual errors preclude any detailed discussion of the puckering.

The feature of most interest, and the reason for undertaking the study, is the packing of the molecules. The crystal structures are shown in Figs. 1 and 2. Both structures contain approximately planar layers of molec.les. In the chloro compound, average distance between layers is $3 \cdot 36 \AA$ and the distance of closest approach between any pair of atoms in successive layers is $3.53 \AA$. In the bromo compound, the corresponding distances are $3.45 \AA$ for the average distance and $3.57 \AA$ for the distance of closest approach. However, within the planar layers both structures show the same surprising feature: the $\mathrm{CN} \cdots \mathrm{X}$ interactions, which we were hoping to find, do indeed occur, but between the nitrogen atoms and the ortho halogen atoms rather than the para halogen atoms. In both cases, this means that the angle $\mathrm{C}-\mathrm{N} \cdots \mathrm{X}$ is nearer 120° than $180^{\circ}\left(\mathrm{C}-\mathrm{N} \cdots \mathrm{Cl}\right.$ angle is $122 \cdot 4^{\circ}, \mathrm{C}-\mathrm{N} \cdots \mathrm{Br}$

Table 3. Observed and calculated structure factors for $X_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}(\times 10)$

Unobserpod rofiections aro indicated by (1) (F)
Rofigetions voighted zoro aro indicated by
angle is 130°). The normal triple-bond arrangement for the cyanide group would lead us to expect an angle near 180° for the intermolecular bond angle in cases like this. We can rationalize the 120° bond angle based on resonance forms that place a double bond between the carbon and nitrogen atoms and two unshared pairs of electrons on the nitrogen atom; but this is an ad hoc argument and is not supported by the bond lengths in the chloro compound, which is by far the more accurately determined of the two. Here, interactions are at least as strong, i.e. distances are at least as short, as in the linear cases involving aromatic compounds, although they are not as short as in the XCN and $\mathrm{XC}_{2} \mathrm{CN}$ structures. For p-chlorobenzonitrile, the $\mathrm{CN} \cdots \mathrm{Cl}$ distance has been estimated at $3 \cdot 3 \AA$ (Britton, 1967) compared with $3 \cdot 22$ (2) \AA here. In p-bromobenzonitrile, the $\mathrm{CN} \cdots \mathrm{Br}$ distance has been estimated at $3 \cdot 2 \AA$ (Britton, 1967); in 9-dicyanomethylene-2,7dibromofluorene (Silverman, Yannoni, \& Krukonis, 1969) it has been found to be $3 \cdot 18$ and $3 \cdot 23 \AA$; in this

Obr ©
Fig. 2. Crystal structure of tribromobenzonitrile. The arrangement is as in Fig. 1.
study the distance is found to be 3.06 (4) \AA. This is surprising since each cyanide group is involved in two $\mathrm{CN} \cdots \mathrm{Br}$ contacts here, compared with only one in the other compounds mentioned. It is difficult to imagine that an increase in the number of contacts per group is also accompanied by an increase in strength for each contact.

Table 4. Bond lengths and angles in $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$ and $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$
$X(2)-C(2)$
$X(4)-C(4)$
$X(6)-C(6)$
$C(1)-C(2)$
$C(2)-C(3)$
$C(3)-C(4)$
$C(4)-C(5)$
$C(5)-C(6)$
$C(6)-C(1)$
$C(1)-C(N)$
$C(N)-N$
$\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$
$1.75(2) \AA$
$1.71(2)$
$1.73(1)$
$1.40(2)$
$1.38(2)$
$1.41(2)$
$1.41(2)$
$1.41(2)$
$1.39(2)$
$1.45(2)$
$1.12(2)$
$\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CN}$ 1.84 (4) \AA $1 \cdot 89$ (5)
$1 \cdot 47$ (6) $1 \cdot 43$ (5) $1 \cdot 41$ (6) $1 \cdot 21$ (8)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{X}(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{X}(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{X}(4)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{X}(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{X}(6)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{X}(6)$
$\mathrm{C}(\mathrm{N})-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(\mathrm{N})-\mathrm{C}(1)-\mathrm{C}(6)$
N

$117 \cdot 6(15)^{\circ}$	$115(4)^{\circ}$
$123 \cdot 9(15)$	$123(4)$
$115 \cdot 2(15)$	$116(4)$
$125 \cdot 1(13)$	$125(4)$
$114.6(14)$	-
$123 \cdot 3(15)$	-
$117 \cdot 4(15)$	$118(4)$
$118 \cdot 7(15)$	$119(4)$
$116.7(15)$	$115(4)$
$118 \cdot 2(14)$	-
$116 \cdot 9(14)$	-
$119 \cdot 5(14)$	-
$123.7(15)$	$121(5)$
$118 \cdot 7(16)$	-
$174.4(18)$	$163(6)$

Model calculations perhaps shed some light on the structures. As a reference, we estimate the molecular volume of the bromo compound, assuming that the structure is essentially that shown in Fig. 2. Also, we assume that it is idealized so that all bond lengths are normal, all bond angles are exactly 120° or 180° as appropriate (including the $\mathrm{C}-\mathrm{N} \cdots \mathrm{Br}$ angle), and that important intermolecular contact distances are those actually found, i.e. $3 \cdot 06 \AA$ for $\mathrm{N} \cdots \mathrm{Br}, 4 \cdot 01 \AA$ for $\mathrm{Br} \cdots \mathrm{Br}$, and $3.45 \AA$ for the average interlayer spacing, Then, we find that unit-cell dimensions shift about 5%, but the molecular volume stays at $223 \AA^{3}$. If we make the same hypothetical calculation for the chloro compound in the same arrangement, with $\mathrm{N} \cdots \mathrm{Cl} 3 \cdot 22 \AA, \mathrm{Cl} \cdots \mathrm{Cl}$ $3.70 \AA$, and the interlayer distance $3.36 \AA$, the molecular volume is $206 \AA^{3}$ compared with the $205 \AA^{3}$ found in the actual structure. This says, in effect, that the actual structure of the chloro compound involves no more efficient packing than the hypothetical one; and it suggests that perhaps the reason for the difference in the structures is that chlorine, being a weaker acid than bromine, cannot accommodate two cyanide groups simultaneously. Fig. 1 shows that there is another chlorine atom close to the nitrogen atom; $\mathrm{CN} \cdots \mathrm{Cl}$ is $3.69 \AA$ and $\mathrm{C}-\mathrm{N} \cdots \mathrm{Cl}$ is 106.3°. This
might be regarded as an incipient second Lewis acidbase interaction, but the geometry at the chlorine atom, where $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{N}$ is approximately 90°, makes it unlikely. Returning to the bromo compound, if we make the same calculation, but with a $\mathrm{CN} \cdots$ Brdistance of $3.06 \AA$ between the cyanide group and the bromine atom in the para position on the next molecule, and further require that all $\mathrm{Br} \cdots \mathrm{Br}$ distances be $4.00 \AA$ or greater, with interlayer spacing of $3 \cdot 45 \AA$, thus shifting the $\mathrm{CN} \cdots \mathrm{Br}$ interaction from the ortho to the para bromine atom, we find a molecular volume of $230 \AA^{3}$, about 3% larger than in the actual stiucture. Presumably, the actual structure occurs because its greater packing efficiency, and therefore greater van der Waals energy, more than offsets the failure to make the best (linear) $\mathrm{CN} \cdots \mathrm{Br}$ contact.

We thank the National Science Foundation for their support of this work and the National Aeronautics and Space Administration for a fellowship to V.B.C. We also thank Richard Gehrz, Henry Grote, and Roger Kwong for their assistance.

References

Bjorvatten, T. (1968). Acta Chem. Scand. 22, 410.
Borgen, B., Hassel, O. \& Rømming, C. (1962). Acta Chem. Scand. 16, 2469.
Bredig, M. A. (1930). Z. Kristallogr. 74, 56.
Britton, D. (1967). Perspect. Struct. Chem. 1, 109.
Christensen, T. A. \& Strømme, K. O. (1969). Acta Cryst. B25, 657.
Geller, S. \& Schawlow, A. L. (1955). J. Chem. Phys. 23, 779.

Gol'der, G. A., Zdanov, G. S. \& Umanskij, M. M. (1952). Z. Fiz. Khim. SSSR, 26, 1434, per Struct. Rep. 16, 510.

Heiart, R. B. \& Carpenter, G. B. (1956). Acta Cryst. 9, 889.

International Tables for X-ray Crystallography (1962). Vol. III, p. 201. Birmingham: Kynoch Press.
Ketelaar, J. A. A. \& Zwartsenberg, J. W. (1939). Rec. Trav. chim. Pays-Bas, 58, 448.
Schlemper, E. O. \& Britton, D. (1965). Acta Cryst. 18, 419.

Silverman, J., Yannoni, N. \& Krukonis, A. P. (1969). Acta Cryst. A25, S 139.

The Crystal Structures of $\mathrm{BrC}(\mathrm{CN})_{3}, \mathrm{ClC}(\mathrm{CN})_{3}$, and $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$

By Jerry R. Witt
Department of Chemistry, Winona State College Winona, Minnesota, U.S.A.
and Doyle Britton and Carol Mahon
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

(Received 11 June 1971)
Bromotricyanomethane, $\mathrm{BrC}(\mathrm{CN})_{3}$, is orthorhombic, space group Pbca $\left(D_{2 h}^{15}\right)$, with $a=6.09(1), b=$ $11 \cdot 49$ (2), and $c=17.62$ (3) \AA; there are eight molecules in the unit cell. The structure has been determined from three-dimensional Weissenberg film data and refined by least-squares methods to a conventional R of $0 \cdot 15$. The structure contains tetrahedral $\operatorname{BrC}(\mathrm{CN})_{3}$ molecules with normal bond distances and angles. The packing is dominated by a short intermolecular $\mathrm{N} \cdots \mathrm{Br}$ distance of $3.03 \AA$ and two short $\mathrm{N} \cdots \mathrm{C}$ distances of $3 \cdot 18$ and $3 \cdot 20 \AA$. Chlorotricyanomethane, $\mathrm{ClC}(\mathrm{CN})_{3}$, and $1,1,1$-tricyanoethane, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$, are isomorphous, both hexagonal, space group $P 6_{3} / m$ ($C_{6, n}$), with identical cell constants $a=10.23$ (2) and $c=9.95$ (2) \AA; there are six molecules in the unit cell. Both structures were solved from three-dimensional Weissenberg data and were refined by least-squares methods: $\mathrm{ClC}(\mathrm{CN})_{3}$ to an R of $0.088, \mathrm{CH}_{3} \mathrm{C}(\mathrm{CN})_{3}$ to an R of 0.155 . The structures contain tetrahedral molecules with required mirror symmetry; these molecules also have normal bond distances and angles. Short intermolecular distances were found between a nitrogen atom on one molecule and three cyanide carbon atoms on the next; $\mathrm{N} \cdots \mathrm{C}$ is approximately $3 \cdot 10 \AA$ in all cases. These interactions lead to the formation of weakly bound trimers. Orthorhombic and monoclinic modifications of $\mathrm{ClC}(\mathrm{CN})_{3}$ were also found.

Introduction

As part of a continuing study of weak Lewis acid-base interactions (see the preceding paper for a more extensive introduction) we have determined the crystal structures of bromo-, chloro-, and methyltricyanomethane, $\mathrm{XC}(\mathrm{CN})_{3}$, where $\mathrm{X}=\mathrm{Br}, \mathrm{Cl}$, or CH_{3}, to deter-
mine whether any unusual intermolecular interactions are present. These compounds are all unstable and volatile so that low-temperature measurements would be required for accurate structure determinations. However, since our main interest is in the packing, we have used the available equipment to determine the structures at room temperature.

[^0]: * $r=\sum w\left(\left|F_{o}\right|^{2}-\left|F_{c}\right|^{2}\right)^{2} / \sum w\left|F_{o}\right|^{4} ; R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right| ;$ $w=\left(F_{w} / F_{o}\right)^{4}$ for $F_{o}>F_{w} ; w=1.0$ for $F_{o} \leqslant F_{w} ; w=0.5$ for F_{o} unobserved. The numerator of r was the function refined. Various calculations were made using local programs or programs supplied by Dr L. W. Finger of the Geology Department of the University of Minnesota, and were carried out on the CDC 1604 computer at the University Computer Center. Scattering factors used in the calculations were taken from International Tables for X-ray Crystallography (1962).

